Driving through Glacier National Park along Going-to-the-Sun road is to experience 1.4 billion years of Earth history unfolding before you...

In the 50 miles between West Glacier and Saint Mary, you will pass through eight different formations of the Belt Supergroup, sediments deposited in a restricted sea roughly 1.4 billion years ago and subsequently squeezed, tilted and faulted by extreme tectonic forces.

You will also see dozens of classic glacial features—hanging valleys, cirques, and paternoster lakes—evidence of the power of the ice, once a mile thick near the park, that sculpted the Belt rocks during the last Ice Age, a mere 12,000 years ago.
ITINERARY OVERVIEW

STOP 1 — APGAR VILLAGE | LAKE MCDONALD, TRIP OVERVIEW

STOP 2 — McDONALD CREEK | DEEP-WATER DEPOSITS

STOP 3 — BIRD WOMAN FALLS | GLACIAL FEATURES

STOP 4 — LOGAN PASS | LUNCH, VISITOR’S CENTER, OPTIONAL HIKE

STOP 5 — LUNCH CREEK | MOLAR TOOTH & STROMATOLITES

STOP 6 — GRINNELL ROAD CUT | SHALLOW-WATER DEPOSITS

STOP 7 — ST. MARY LAKE | ICONIC PARK LANDSCAPE
STOP 1 — APGAR VILLAGE

LAKE MCDONALD | GROUP PHOTO | TRIP OVERVIEW

Flathead Lake Biological Station - The University of Montana
32125 Bio Station Lane, Polson, MT 59860

1 Head east on Bio Station Ln toward MT-35 E
 0.2 mi

2 Turn left onto MT-35 W
 27.4 mi

3 Turn right onto Montana Hwy 206
 9.7 mi

4 Turn right onto US-2
 14.6 mi

5 Turn left onto Glacier Rte 1 Rd/Going-To-The-Sun Rd
 ▶ Parts of this road may be closed at certain times or days

1 h 9 min
54.6 miles
The rocks of the Belt Supergroup comprise the vast majority of what can be found at the surface within the park.

Thousands of feet thick, the Belt has provided a uniquely well-preserved window into the Proterozoic world to researchers for more than 100 years.

In the cross section above, the formation names used in the Livingstone range (west) are slightly different than those used in the Lewis range (east), though the layers of rock are easily correlated using distinctive marker units and are, in most cases, lithologically very similar.
Glacier National Park, Montana

Lewis Thrust fault
 teeth on hanging wall

Thrust fault
 teeth on hanging wall

Normal fault
 bar and ball on hanging wall

Quaternary till and alluvium

Tertiary Kisheneh Fm. (Oligocene and Eocene)

Cretaceous undivided, in lower plate of Lewis Thrust. Predominantly overlain by Quaternary landslide deposits.

Proterozoic Belt Supergroup, in upper plate of Lewis Thrust

Belt rocks overlying Snowslip Fm. --includes, Shepard, Mt. Shields, Bonner Quartzite, and McNamara Fm.

Snowslip Fm.

Porcell silt

Helena Formation

Appelkany, Grinnell, and Empire Formations. Includes the Prihark Fm. on the west side of the park.

Alytn Dolomite. Includes Waterton Fm., near north end of the park.

Modified from Whipple, USGS I-1508-F
by Marli Bryant Miller, University of Oregon
Relief map of the same area shown to the left, higher elevations are shown in browns. Note how well the topographic highs correlate with the distribution of the Belt Supergroup.
From ~1.7 billion years ago until possibly as recently as 700 million years ago, the Siberian platform and North American craton were joined (Evans, et al., 2016), and a large epicratonic seaway covered much of modern day Washington, Idaho, Montana, and western Canada.

The rocks of the Belt, Purcell, and Windermere supergroups, stretching from southern Montana to the Yukon, are the remnants of this billion-year connection.
The Lewis Thrust

1. Precambrian rock layer begins to move on top of Cretaceous rock layers along thrust fault

2. Over thrust of Precambrian rock

As the Farallon Plate was subducted beneath North America approximately 72-58 million years ago, the Lewis Thrust, as well as many other thrust faults in the region, were created.
STOP 2 — McDONALD CREEK

DEEP-WATER DEPOSITS OF THE PRICHARD FORMATION
STOP 3 — BIRD WOMAN FALLS

GLACIAL FEATURES
Mountain Glaciers and Erosion

As glaciers flow, they erode the underlying landscape by scouring and plucking away the rock, creating U-shaped valleys. Differential erosion rates of small tributary mountain glaciers and the main, valley glacier create hanging valleys like Bird Woman Falls.
STOP 4 — LOGAN PASS

LUNCH | VISITOR’S CENTER | OPTIONAL HIKE TO HIDDEN LAKE OVERLOOK

The hike to Hidden Lake Overlook is along a sloping boardwalk with a few stairs. It's worth walking up the path at least far enough to see the spectacular mud cracks in the massive boulders of the Snowslip Formation. There is also a good chance of spotting yellow-bellied marmots and mountain goats.
Optional Hike to Hidden Lake
STOP 5 — LUNCH CREEK

MOLAR TOOTH STRUCTURES & STROMATOLITES

The Helena Formation, mostly carbonate, features molar tooth structures and stromatolites that are both visible in the road cut. The best stromatolites in the park are cross-sectional views atop the outcrop, which is a short, uphill hike through the brush.
Classic molar tooth structures may be telltale signs of methane production (and escape) in ancient sediments.
STROMATOLITES

Stromatolites form a wide variety of shapes. The prominent fossil stromatolite reef of the Helena Formation features conical *Conophyton* and columnar, branching *Baicalia*:

![baicalia](image1.jpg)

Baicalia

![conophyton](image2.jpg)

Conophyton

The best cross sections of *Conophyton* are atop the road cut:

![cross_sections](image3.jpg)

Plan-view cross section

Side-view cross section
Conophyton from the Helena and interpretive sketches in plan view (above-top) and cross-section (above-bottom) from Horodyński RJ, 1983, Precambrian Research

Columnar Baicalia stromatolites, again from the Helena Formation on the left and the interpretive sketches of Horodyński on the right.
STOP 6 — GRINNEL ROAD CUT

SHALLOW-WATER DEPOSITS

Outcrops of the Grinnell Formation are filled with mud cracks, ripple marks (left), rip-up clasts (right), and other “snapshots” of a shallow deposition.
STOP 7 — ST. MARY LAKE

WILD GOOSE ISLAND VIEW — ICONIC PARK LANDSCAPE

This iconic view along Going-to-the-Sun Road features Wild Goose Island against a backdrop of the park interior. At the overlook a mile to the west (turnout visible across the lake in this photo), the road cuts through the dull green argillite of the Appenkunny Formation, which was deposited in deep, likely anoxic waters.