Join us for SUMMER SESSION 2019
at Flathead Lake Biological Station!

Course Offerings (1, 3, 5 & 6 credit courses)

Jun 24–Jul 5
- Conservation Ecology (3 cr)
- Environmental Sensors (3 cr)

Jun 24–Jul 19
- Field Ecology (5 cr)
- Seminars in Ecology (1 cr)

Jun 24–Aug 1
- Evolution of Behavior (6 cr)

Jul 8–Jul 19
- Landscape Ecology (3 cr)
- Aquatic Microbial Ecology (3 cr)

Jul 22–Aug 2
- Alpine Ecology (3 cr)
- Stream Ecology (3 cr)
- UAV RS for Freshwater Ecology (3 cr)

Aug 5–Aug 16
- Forest & Grassland Ecology (3 cr)
- Lake Ecology (3 cr)

Independent Study (Duration and credits vary)

Jun 24–Aug 16
- Advanced Undergrad Research (3–6 cr)
- Undergraduate Thesis (3–6 cr)
- Research in Ecology (1–8 cr)

Overview1
How to Apply2
Scholarships3
Course Descriptions4–6
Fees6
Logistics, Travel7–8

About Our Program

The summer academic session is a rigorous rewarding field ecology experience. We emphasize experiential learning through direct observation of biota and ecological processes in the field and in hands-on activities in the SensorSpace, MEL, and SERL labs.

Courses involve field trips to Flathead Basin sites like Glacier National Park, and most courses include overnight camping. Experience sweeping vistas and traverse spectacular terrain while exploring pristine alpine wilderness, crystal-clear mountain lakes, streams, and rivers—all benefits of an academic adventure and scholarly fun in the “Crown of the Continent” in Northwest Montana.

A Legacy of Ecological Education

The first FLBS field course was offered in 1899 (120 years ago!), distinguishing FLBS as one of the oldest biological stations in the United States. Courses and faculty have changed over the years, but our commitment to high-quality education remains consistent with founder Dr. Morton J. Elrod’s vision of sharing knowledge through field experience.

On the Shores of Flathead Lake

The Station is located on the east shore of Flathead Lake, ~85 miles north of Missoula, MT. In this pristine setting, you are one of about 40 students living in cabins and will meet a diverse group of people. FLBS is a year-round facility with research, education and support staff of about 35 people plus postdocs, grads and interns, and a steady flow of visiting investigators from across the U.S. and around the globe.

Apply online

https://flbs.umt.edu/apps/education/

Get Out Here!
Summer Courses at Flathead Lake Biological Station

Courses carry undergraduate semester credits at the 300 or 400 levels and graduate credit at the 400 level. Taking a full load of 12–13 credits over the 8-week session is a great way to accelerate fulfilling graduation requirements. Formal admission to the University of Montana (UM) is not required. Official OR unofficial transcripts are required for UM and non-UM students. International applicants should review international application information for additional forms and fees at https://flbs.umt.edu/apps/education/ss_international.aspx. International students may attend under a J-1 exchange visitor visa.

Credits earned at FLBS are transferable to UM degree plans in Wildlife, EVST, Field Ecology and Biological Sciences and also to degree programs at most colleges and universities. Students easily transfer credits once grades are recorded using the National Student Clearinghouse at https://studentclearinghouse.org/.

How to Apply

Apply online at https://flbs.umt.edu/apps/education.

1. Use the website to:
 • Create an application account
 • Enter personal information, course selections, and housing / dietary preferences
 • Acknowledge policy and other information statements
 • Attach required forms
 • Pay a $50 nonrefundable application fee by credit card online.

2. **EARN A $100 EARLY BIRD DISCOUNT** by submitting your application no later than **Midnight MDT on JANUARY 14, 2019**. Applications will not be accepted after Midnight MDT on May 6, 2019.

Summer Session Acceptance

Selection of applicants and filling of classes begins mid February, 2019 for applicants with an Eligible for Selection status as of February 8. Thereafter, students with complete applications can expect notification of acceptance within three weeks. Courses require minimum enrollment and may be subject to cancellation after early March enrollment review.

Summer Session Payment

Full tuition, housing and meal fees are due in full no later than Midnight MDT on May 18, 2019. If payment is not made by this deadline, your courses are not guaranteed and your seat may be given to waitlist applicants. You may reapply incurring an additional nonrefundable application fee of $50. Fees may be paid online by credit debit card. Discover, Mastercard and Visa are accepted. For other payment options, call 406.872.4515.

Cancellations must be received in writing; send an email to summersession@flbs.umt.edu before Midnight MDT on May 6, 2019. Fees paid on or before this deadline will be refunded, excluding the nonrefundable application fee of $50. Cancellations made after this deadline will result in forfeiture of all fees paid to date.

To say this summer was an epic adventure doesn’t even begin to do it justice. Here’s to the summer of a lifetime!

INITIAL APPLICATION REVIEW

<table>
<thead>
<tr>
<th>DEC 5</th>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Available Online</td>
<td>Early Bird DEADLINE For $100 Discount</td>
<td>Classes Begin to Fill</td>
<td>Scholarship Application Deadline</td>
<td>Application & Cancellation Deadline</td>
<td>Tuition & Fees Payment Deadline</td>
<td>Summer Term Begins</td>
</tr>
</tbody>
</table>

CLASSES FILLING

CLASSES FINALIZED
Scholarships

Numerous academic scholarships are available for U.S. and non-U.S. students who apply to the summer academic program. Completed scholarship applications are due by Midnight MDT on March 18, 2019.

Students achieving Sophomore class standing at the end of Spring 2019 with a G.P.A. of at least 3.0 in the general area of the life sciences are invited to apply. Graduate students are also eligible. Students who demonstrate financial need are also strongly urged to apply.

Completed scholarship applications consist of the following:

1. Completed summer session application with official or unofficial college transcripts.
2. A statement about why you wish to attend FLBS. Indicate which courses or research work will be undertaken during the summer session. Explain how participation in courses and research at FLBS are relevant to your university curriculum or your plans for future work.
3. Two letters of reference from faculty members in support of your request must be emailed to summersession@flbs.umt.edu (or mailed as noted below) directly by each reference to FLBS.
4. If applying based on financial need, submit a PDF or print copy of your FAFSA SAR for 2018–2019 or 2019–2020.
5. Applicants may email all other scholarship materials to flbs@flbs.umt.edu or send to Scholarship Committee, Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT 59860-6815.
6. Incomplete applications will not be considered. Scholarship applicants must confirm that all scholarship materials have been received.

Scholarship List

Scholarships are provided through the generosity of many donors.

- Mary Elrod Ferguson Memorial in Honor of Dr. Morton J. Elrod
- Dr. Jessie Bierman Scholarship
- Eric and Tootie Myhre Scholarship
- James Hunter and Colleen Shaw Dion Scholarship
- Dr. Robert L. Gilbertson Scholarship
- Matthew Levitan Scholarship
- Charles “Chuck” Levitan Scholarship
- Robert Levitan Scholarship
- Mark Levitan Scholarship
- Sara Spero Levitan Scholarship
- Richard and Jane Solberg Scholarship
- James J. Elser Scholarship
- James and Wanda Hollensteiner Scholarship
- Jack and Suzi Hanna Scholarship
- John and Rosanne Elser Scholarship

Qualified, enrolled summer students (UM and non-UM) are eligible to apply for scholarships. A high percentage of applicants receive awards!
Summer 2019 Course Offerings

Six-Week Courses

EVOLUTION OF ANIMAL BEHAVIOR, BIOB 491, June 24–August 1, M–Th, Full Day, 6 Credits Prerequisites: One semester of college-level biology and an ecology course (can be met via BIOE342 Field Ecology at FLBS) or equivalents; or consent of instructor. Principles and methods of evolutionary behavioral ecology, strongly emphasizing the development and honing of professional field study skills. Interactive lectures and discussions will cover basic and advanced concepts relevant to modern Darwinian analyses of complex contingent behaviors, including sexual and social behaviors. Our opportunistically chosen study organisms will consist of diverse terrestrial species, including fantastical and highly observable arthropods. As individuals, small teams, and sometimes as a whole group, we will discover and study behavioral phenomena bestowed upon us on the FLBS grounds and, as logistics allow, other wonderful nearby locations. We shall engage in close observation of behaviors, followed by whole-class round-table formulation of (a) evolutionary adaptationist hypotheses about a given behavior’s possible net benefits, (b) testable predictions of each hypothesis, and (c) effective and efficient methods to test those predictions in the field or lab; in the classroom or on-the-spot in the field. Methodological troubleshooting will be a big part of our work together. All potentially meaningful data will be analyzed. Instructor – Dr. Paul Watson, U of New Mexico (http://biology.unm.edu/pwatson/pjw_cv.htm).

FIELD ECOLOGY, BIOE 342, June 24–July 19, M–Th, Full Day; F, Half Day; 5 Credits Prerequisites: College-level biology, chemistry, and mathematics or equivalents; or consent of instructor. The course engages major concepts and approaches in modern ecology via immersive field experiences, hands-on sampling, and project-based learning in both aquatic and terrestrial habitats. Topics range from physiological and behavioral ecology to population and community ecology to ecosystem ecology. The course will build students’ natural history knowledge of the biota of the Rocky Mountain region while directly engaging them in active research projects of FLBS / UM faculty. This course is conducted largely outdoors regardless of weather so that ecological phenomena can be examined in real time and real life. All-day and overnight trips will be conducted throughout the course, taking students into a range of aquatic and terrestrial environments near the Bio Station and the adjacent mountain areas including Glacier National Park. Students should be physically fit and able to hike 10 miles per day. Students will conduct directed measurements connected to ongoing research projects of the faculty, developing technical skills as well as skills in analysis and interpretation in written and oral form. Meets UM writing requirement. Instructors – Dr. James Elser, FLBS-U of Montana (https://flbs.umt.edu/urls/people) and Dr. Diana Six, U of Montana (https://www.cfc.umt.edu/personnel/details.php?ID=1140)

SEMINARS IN ECOLOGY & RESOURCE MANAGEMENT, BIOL 492, June 24–July 19, Mondays 10 am–11am, 1 Credit (CR/NCR) This course may only be taken concurrently with any combination of courses in the first 4 weeks of summer session. The course involves presentation and discussion of local environmental issues and problems. Instructor – Dr. Gordon Luikart, FLBS-U of Montana (https://flbs.umt.edu/urls/peo)

Two-Week Courses

CONSERVATION ECOLOGY, BIOE 440, June 24–July 5, M–F, Full Day, 3 Credits Prerequisites: One semester of college-level biology and an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. Principles and methods of conservation ecology applied to aquatic and terrestrial species and ecosystems with emphasis on evolution, population genetics and behavioral ecology as key attributes to be considered in the design and implementation of conservation. This course emphasizes the application of basic biological research to problems in conservation and management with an eye toward the interface between science and policy. Five primary course themes are: defining population units of conservation; the effects of introduced species (including invasive species, hybridization, and infectious disease); habitat modification and climate change; population viability and monitoring; and policy and politics. These themes are applied to a diversity of case studies that have been chosen to illustrate general issues in conservation. A special aspect of the course is spending most of our time in the field with practicing, expert conservation biologists who work for state and federal government agencies or nongovernmental organizations. Instructor – Dr. Gordon Luikart, FLBS-U of Montana (https://flbs.umt.edu/urls/people)

ENVIRONMENTAL SENSORS: DESIGNING, BUILDING, AND DEPLOYING IN THE FIELD, BIOB 491, June 24–July 5, M–F, Full Day, 3 Credits Prerequisites Two semesters of undergraduate course work in a science, technology or engineering major; or consent of instructor. Networked, autonomous environmental sensors are increasingly being used to collect real-time data about the natural world. Understanding how to design and produce the appropriate sensor to answer specific scientific questions requires knowledge from a broad range of disciplines. The Flathead Lake Biological Station’s SensorSpace (https://sensorspace.tech/) is a cutting-edge facility that enables scientists and engineers to design and manufacture their own environmental sensor networks. This course is designed for both engineering and ecology students to work on small team projects to learn about, design, manufacture, and deploy robotic environmental sensor networks. This course will include instrumentation design, manufacturing, and wireless network communications in the field. Instructor – Dr. Cody Youngbull, FLBS-U of Montana (https://flbs.umt.edu/urls/people)

VERY IMPORTANT—To participate in this course at FLBS you must be in good physical condition, able to hike up to 10+ miles a day in strenuous conditions at altitude, and properly equipped for a great deal of hiking!
LANDSCAPE ECOLOGY, BIOE 451, July 9–20, M–F, Full Day, 3 Credits Prerequisites: One year of college-level biology, chemistry, and mathematics; and an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. The objective of this course is to understand the physical and ecological processes that shape landscapes, how these biological and physical processes interact, and how they are responding to global change. We will examine how plants and animals are distributed across landscapes, how the physical template of the environment shapes species distributions and how biotic feedbacks can influence the physical environment. We will examine processes of pattern formation in the environment such as disturbance from fire and how landscape pattern can affect both physical and biological processes. Field trips will underscore concepts and allow data gathering and interpretation by students. Students are introduced to both satellite and airborne remote-sensing tools used in a GIS environment. Students will analyze and interpret spatially explicit data through analyses and oral presentations. **Instructor – Dr. Solomon Dobrowski, U of Montana (https://www.cfc.umt.edu/personnel/details.php?ID=1110)**

AQUATIC MICROBIAL ECOLOGY, BIOB 400, July 8–19, M–F, Full Day, 3 Credits Prerequisites: One year of college-level biology, chemistry, and mathematics, or equivalents; or consent of instructor. For students with interests in environmental microbiology and aquatic ecology, this intensive field course provides a conceptual foundation and experiential field and laboratory training in modern methods in aquatic microbial ecology. Students will explore topics such as physiology and metabolism of aquatic microbes; methods and tools for assessing microbial diversity, biomass, and growth; and the role of microbes in bioelemental cycles. Students will gain hands-on experience with both cultivation-based approaches and cultivation-independent methods for studying environmental microorganisms. **Instructor – Dr. Matthew Church, FLBS-U of Montana (https://flbs.umt.edu/urls/people)**

ALPINE ECOLOGY, BIOE 416, July 22–August 2, M–F, Full Day, 3 Credits Prerequisites: One semester of college-level biology, chemistry, and mathematics, or equivalents; or consent of instructor. Distribution, abundance and life cycles of plants and animals and their unique ecophysiological adaptations to life in the rigorous environments of mountains, high above the timberline, with emphasis on the Crown of the Continent area. Students learn about the distributions of plants and animals and study the processes and interactions that are the foundation to ecology in alpine environments. Substantial emphasis is placed on processes that organize communities and the global drivers of climate and how those processes affect alpine systems. Field trips wit extensive hiking and data intensive class projects underscore major concepts allows training in data gathering, analysis, presentation and interpretation. **Instructor – Dr. Wendy Ridenour, U of Montana Western (https://w.umwestern.edu/faculty/wendy-ridenour-ph-d/)**

LAKE ECOLOGY, BIOE 453, July 22–August 2, M–F, Full Day, 3 Credits Prerequisites: One year of college-level biology, chemistry, and mathematics, and an ecology course (BIO E342) or equivalents; or consent of instructor. Physical, chemical, and biological characteristics of lake ecosystems with an emphasis on how physical processes of lake circulation and stratification, nutrient loading and cycling, primary and secondary production and food web interactions, and atmospheric and land/watershed use affects water quality. This course focuses on functional relationships and productivity of plant and animal assemblages in lakes as regulated by physical, chemical and biotic processes. Fundamental concepts of ecology as they relate to the aquatic environment are emphasized. Limnological principles are presented within the context of regional and landscape spatial scales. Students will learn basic and contemporary methods of study in field settings including Flathead Lake, glacial lakes of Glacier National Park, intermontane prairie kettle lakes and nutrient rich lakes with emphasis toward experiential learning and obtaining hands-on examination and characterization of lakes. **Instructor – Dr. Shawn Devlin, FLBS-U of Montana (https://flbs.umt.edu/urls/people)**

STREAM ECOLOGY, BIOE 439, August 5–16, M–F, Full Day, 3 Credits Prerequisites: One year of college-level biology, chemistry, and mathematics, and an ecology course (BIOE 342) or equivalents; or consent of instructor. The biota and ecological processes of running waters with unifying principles and contemporary research approaches. This course focuses on the fundamental concepts of stream/river ecology and the physical, chemical and biological processes that characterize running water ecosystems. Students learn principles, concepts and methods of study in a field setting, and obtain hands-on experience in the examination and characterization of stream systems. **Instructor – Dr. Robert Hall, FLBS-U of Montana (https://flbs.umt.edu/urls/people)**

ECOLOGY OF FORESTS AND GRASSLANDS, BIOE 458, August 5–16, M–F, Full Day, 3 Credits Prerequisites: One year of college-level biology, one semester of college-level chemistry, one semester of college-level mathematics, an ecology course (BIOE 342) or equivalents; or consent of instructor. Patterns and processes of forests and grasslands of the northern Rocky Mountains in the context of principles of population, community and ecosystem ecology. This course emphasizes the interactive biophysical attributes and processes of the forests and intermountain grasslands. Students observe and learn about plant and animal distributions, plant community structure and behavior including principles of plant ecology, ecophysiology and plant and animal interactions in these environments. Energy and materials transfer and feedbacks within food webs are used to describe complex interrelationships driving the dynamics of these systems, including both natural and human components as modifiers of systems dynamics. **Instructor – Dr. Andrew Larson, U of Montana (https://www.cfc.umt.edu/personnel/details.php?ID=1710)**

UNMANNED AERIAL VEHICLE (UAV) REMOTE SENSING FOR FRESHWATER ECOLOGY, GPHY 474, August 5–16, M–F, Full Day, 3 Credits Prerequisites: Coursework in GIS (FORS 250 Intro to GIS for Forest Management or GPHY 284 Intro to GIS and Cartography at UM) or equivalents; or consent of instructors. Knowledge of remote sensing is preferred, not required. This course will introduce students to field-based methods of close range remote sensing in freshwater ecosystems. Students will gain knowledge of basic spatial analysis through GIS and remote sensing techniques, and will learn basic application of drones and ADP, two remote sensing instruments of fast growing interest in ecological research and application. Students will learn about essentials to operate drones and ADPs, initial post processing of data products and integrating these data into ecological research and application. **Instructors – Dr. Michael Döring, ZHAW (https://www.zhaw.ch/en/about-us/person/doei/) and Diane Whited, FLBS-U of Montana (https://flbs.umt.edu/urls/people)**
Summer 2019 Course Offerings

Advanced Undergraduate Research, BIOE 490, 3–6 Credits (CR/NCR) Independent research experience in field ecology associated generally with the various research projects at FLBS. Projects are mentored by permanent and visiting FLBS faculty. Send us a short outline of research work you would like to undertake.

Undergraduate Thesis, BI 499, 1–6 Credits (CR/NCR) Prerequisite: Senior standing and consent of instructor. Objective is preparation of a thesis/manuscript based on undergraduate research in field ecology for presentation and/or publication. Student must give an oral presentation at the Biological Station. Student provides short outline of proposed research work.

Research in Ecology, BI 596, 1–8 Credits (CR/NCR) Open only to non-UM graduate students. The purpose of this independent research is to solve a specific ecological problem unrelated to thesis or dissertation as identified and examined by the student under mentorship of a Biological Station professor. Independent research includes design, analysis and reporting of ecological data. Student provides outline of proposed research work.

Summer Session Fees, Housing, and Food Service

Fees — Course fees for residents and nonresidents are $490 per credit, which includes a credit recording fee assessed by the University of Montana School of Extended and Lifelong Learning. Total fees are calculated based on the number of credits you elect to take (Table A) plus the housing and meal plan (Table B) for the number of weeks you attend. Students who complete their application and pay the $50 application fee on or before Monday, January 14, 2019, receive a $100 Early Bird Application Discount. This discount is applied to housing fees.

Housing and Food Service — Living on the Biological Station grounds is required to allow full-time interaction between students, instructors and the world-class research program here. There are 30 double occupancy (12’ x 14’) cabins. All cabins are heated and furnished with lights, electricity, two twin-size beds, chairs, desks, and closets. Restroom and shower facilities are located near the cabins. The G. W. Prescott Dining Hall has indoor or outdoor dining overlooking Flathead Lake. Housing and dietary preferences are selected when you apply.

Most applicants opt for cabin double occupancy at $50 per week. Single cabin occupancy is $100 per week and contingent on availability. Roommates are assigned by gender and other preferences (e.g., nonsmoker). All housing assignments are final.

Food service includes breakfast, lunch, dinner beginning the first day of course-work through the last day. Monday through Fridays, students are served hot meals for break-fast and dinner. Lunches are packed by each student during breakfast and consist of a variety of options each day. Weekend sacked meals are self-serve and are available each Friday after 3 pm. Kitchen staff packs meals based on student selected entrees and sides. Meals for all-day and/or overnight field trips are co-ordinated by the instructor and kitchen staff for the entire group. For every meal at the dining hall or preplanned meals and menus, medically necessary dietary preferences and food allergies are taken into account. We strive to accommodate dietary needs within capacity to do so; not all dietary preferences can be met daily; some students opt to supplement food service meals to meet their needs and preferences.

Check in Sunday afternoon before first scheduled class day. Sunday dinner prior to orientation meeting is provided for students arriving on Sunday, June 23, 2019. A Sunday evening meal is not available for July 7, July 21, or August 4 arrivals.

Check out 11:00 am on the day following your last scheduled class day.

Pets are not allowed on Station grounds.

As part of the University of Montana, FLBS is a tobacco-free campus.

Campfires are not allowed on Station grounds.

Due to the danger of forest fires, personal cooking by students is not allowed.

Medical insurance is not included in fees. All UM and non-UM students are required to carry medical health insurance valid in Montana for emergency and routine healthcare. Medical health insurance is not available through the Flathead Lake Biological Station. Medical facilities are available in the nearby towns of Polson, Bigfork, and Kalispell.
Other Services

FLBS Bookstore. Textbooks and basic course supplies may be purchased at the FLBS Bookstore. You are provided with a list of necessary items upon acceptance to our program. Cash, personal checks, traveler’s checks, money orders and credit cards (Discover/MasterCard/Visa) are accepted in payment for books and supplies.

Banking and Telephone Services. The nearest bank for cashing personal checks and ATM is 15 miles north of the Station in Bigfork. The nearest ATM is at Woods Bay (10.5 mi). Traveler’s checks or a debit/credit card offer added convenience for the duration of your stay. Cell phone service is available in this area, but coverage is spotty. If you do not have a cell phone, a pay phone is available at FLBS. Most calls from FLBS are long distance and a telephone credit card or prepaid phone card is useful.

Climate and Dress

Generally, everyone dresses casually. The last week in June can be somewhat chilly and damp. Bring a cold weather jacket and warm clothes (layers recommended). See average area temperatures below.

```
<table>
<thead>
<tr>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 °F</td>
<td>80 °F</td>
<td>78 °F</td>
</tr>
<tr>
<td>44 °F</td>
<td>47 °F</td>
<td>46 °F</td>
</tr>
</tbody>
</table>
```

Student Mailing Address

You will be assigned a box for mail and messages. Outgoing mail may be sent on normal mailing days; incoming mail should be addressed using the following address:

Your Name
32111 Bio Station Lane
Polson, MT 59860-6815

Computers / Internet Access

Students are required to bring their own laptop. FLBS will work with students unable to bring a personal laptop due to financial hardship. Microsoft Office is also recommended for optimal collaboration with faculty and peers. Bringing your own laptop also allows enrolled students to access shared server storage and software, wireless internet, and classroom printers.

Items-to-Bring Checklist

Students, faculty and staff need to bring the following items:

- Blanket, bedsheets, pillow & pillow case, alarm clock
- Towels and toiletry articles
- Proper clothing plus cap / hat
- Full rain gear is essential plus umbrella
- Hiking boots (not too stiff, and broken in)
- Hot/cold mug and water bottle (2-liter required)
- Lunch pack-up container (small divided or two small containers)
- Flashlight / headlamp, batteries
- Laundry soap/quarters for laundry (~$3 per wash & dry)
- Sunglasses, sunscreen, and insect repellent
- Daypack and backpack, sleeping bag
- Mess kit for field trips & weekends (plates, cups, storage container, eating utensils)
- Camera/digital camera (optional)
- Laptop computer
- Prepaid phone card or cell phone
- Money / ATM card

See complete lists at: https://flbs.umt.edu/apps/education/ss_logistics.aspx
Travel Options and Rides to FLBS

Driving—Many students drive their own vehicles to the Biological Station; follow this link for directions to FLBS: https://flbs.umt.edu/newflbs/about-flbs/location-directions/. If you want riders or need a ride, visit the Student Rider Board (available after you apply). Note that FLBS does not mediate issues with rides arranged on the Rider Board. Students without their own vehicle will need to network with other students to get to town and/or for weekend adventures.

Flying—From out of state, the ideal way to reach FLBS for the summer session is to fly into Glacier International Airport (FCA) in Kalispell before 4 pm on Sunday before your coursework begins. You will prearrange ground transportation (taxi/shuttle) to the Biological Station. However, your circumstances may require you to seek alternate arrangements. **We strongly advise flying into Kalispell (Airport: FCA) which is ~42 miles north of FLBS.** Students sometimes find that it is cheaper to fly into Missoula (Airport: MSO) ~85 miles south of FLBS. You may save money on a flight into Missoula, but there are significant additional time and cost expenses involved in getting to FLBS from Missoula (and back).

Train—Amtrak makes a daily stop in Whitefish (~47 miles north of FLBS). The Westbound train arrives late pm, while the eastbound arrives early am. However, you must then find your own ground transportation from Whitefish to FLBS. (see transfer options below.)

Ground Transport Options by Arrival/Departure Location

Glacier International Airport (FCA) https://iflyglacier.com/
1) Find a driver on the FLBS Rider Board.
2) Car Rental https://iflyglacier.com/travelers/ground-transportation/
3) Shuttle/taxi (prearrange pickup with 48-hours or more advance notice)
 - Arrow Shuttle http://arrowshuttletaxi.com/ Prearrange shuttle pickup online or call 406-300-2301. One-way fare is ~$103.50 plus $3 each additional person.
 - Big D’s Taxi https://bigdstaxi.com/ Prearrange shuttle pickup by calling Big D's Taxi at 406-892-3390. One-way fare is ~$125 plus $3 for each additional person.
 - Search internet on keywords Kalispell Montana taxi for other services.

Missoula International Airport (MSO) https://flymissoula.com/
1) Find a driver on the FLBS Rider Board.
2) Car Rental https://flymissoula.com/parking-transportation/rental-car-center/
3) Shuttles (prearrange pickups with 48-hours or more advance notice)
 - Greyhound Bus – There is only 1 bus daily to Polson from where you will prearrange a taxi to take you to the Biological Station. Plan for an additional overnight stay in Missoula plus meals costs. **One-way costs are estimated** as follows:
 - Taxi from airport to Missoula Greyhound terminal or hotel: ~$20
 - Overnight stay in Missoula and meals to make bus schedule connections: ~$150
 - Prearranged taxi from Polson to FLBS, search internet using keywords Polson Montana taxi service: ~$36

Whitefish Amtrak Train Depot (prearrange with 48-hours or more advance notice)
1) Car rental at Amtrak Station (Hertz)
2) Prearrange shuttle pickup with Arrow Shuttle (see above): $126 plus $3 each additional person
3) Prearrange shuttle with Big D’s Taxi (see above): ~$140 plus $3 for each additional person

GET STARTED NOW!
APPLY ONLINE AT: http://flbs.umt.edu/apps/education
APPLY BY January 14 for a $100 discount!
DON’T WAIT...Classes may fill by February!
Reserve a spot in your FIRST CHOICE CLASSES!