Come Join Us For Our 119th Year!

Overview and Course Dates.. 1
Course Application, Acceptance, and Payment Details ... 2
Scholarships... 3
Course Descriptions ... 4–6
Fees, Housing, and Food Service .. 6
Logistics and Items-to-Bring Checklist...................................... 7
Travel Options and Important Deadlines............................... 8

About Our Program—Our academic session is a rigorous rewarding field ecology experience. We emphasize hands-on learning outside under the open sky. The summer academic courses substitute for required or elective courses in many college degree plans. By gaining real field experience in a research and education environment, you will be more competitive for graduate school or your next job. These courses are also great for professionals looking to upgrade their basic training.

All courses involve field trips to Flathead Basin area sites including Glacier National Park. Direct observation of biota and ecological processes is emphasized and hiking, boating and outdoor field activities are the norm. Most classes involve overnight camping, often in backcountry settings.

Students often backpack on weekends venturing into surrounding wilderness areas and Glacier National Park. You will have abundant photo opportunities while fishing area waters, recreating on Flathead Lake, and kayaking and canoeing on area streams and rivers—some of the extra benefits of an academic adventure in the Crown of the Continent in Northwest Montana.

A Legacy of Ecological Education—Flathead Lake Biological Station opened for students and researchers in 1899. The Station is located on the east shore of Flathead Lake, about 85 miles north of Missoula, MT. During your stay, you can expect to meet a diverse group of people in an atmosphere of scholarly fun. You will be one of about 40 students living in cabins.

Graduate students, research scientists and visiting investigators work and study in this pristine mountain setting on the shores of Flathead Lake. The Station also has a year round full-time research and support staff of about 25 people.
“Every day I learned something new about myself and the world around me.”

Summer Session Courses at the Flathead Lake Biological Station

Courses carry undergraduate semester credits at the 300 or 400 levels and graduate credit at the 400 level or may be taken on an audit basis. Taking a full load of 12–13 credits over the 8-week session is a great way to accelerate fulfilling graduation requirements. Formal admission to the University of Montana (UM) is not required. Official OR unofficial transcripts are required for UM and non-UM students.

Credits earned at FLBS are transferable to UM degree plans in Wildlife, EVST, Field Ecology and Biological Sciences and also to degree programs at most colleges and universities. Transferring credits to another institution simply requires completion of a Transcript Request Form.

Summer Session Application

Apply for 1 or up to 5 classes online at http://flbs.umt.edu/apps/education.

1. Use the website to:
 - enter general student information
 - select courses and room and board preferences
 - attach transcript(s)
 - make a $50 nonrefundable application fee payment by credit card. For other payment options, send an email to flbs@flbs.umt.edu or call 406.982.3301.

2. **EARN A $100 EARLY BIRD DISCOUNT** by submitting your application by **Midnight MDT on JANUARY 12, 2018**. Early application helps us plan courses and logistics for the summer session. You help us, we help you!

 Note—Applications continue to be accepted through Midnight MDT on May 11, 2018.

Summer Session Acceptance

Review of complete applications (with transcripts) will begin on January 12, 2018. Filling of classes begins on February 2, 2018. Thereafter, students with complete applications can be expected to be notified of their status within three weeks.

Summer Session Payment

Pay all tuition, housing, and meal fees online by credit card. Discover, Mastercard and Visa are accepted at FLBS. Contact 406-982-3301 if you unable to pay by credit card. **EARN A $100 EARLY PAYMENT DISCOUNT** by paying all fees by **Midnight MDT on APRIL 30, 2018**.

Full tuition, housing and meal fees are due no later than Midnight MDT on May 25, 2018. If payment is not made by this deadline, your courses are not guaranteed and your seat may be given to waitlist applicants. You may reapply incurring an additional nonrefundable application fee of $50.

Cancellations must be received in writing before Midnight MDT on May 11, 2018. Fees paid on or before this deadline will be refunded except the nonrefundable application fee of $50. Cancellations made after this deadline will result in forfeiture of all fees paid to date. Courses require a minimum enrollment and may be subject to cancellation.
Scholarships

Numerous academic scholarships are available for U.S. and non-U.S. students who apply to the summer academic program. Completed scholarship applications are due by Midnight MDT on APRIL 2, 2018.

Students achieving Sophomore class standing at the end of Spring 2018 with a G.P.A. of at least 3.0 in the general area of the life sciences are invited to apply. Graduate students are also eligible. Students who demonstrate financial need are also strongly urged to apply.

Complete scholarship applications consist of the following:

1. Completed summer session application with official or unofficial college transcripts.
2. A statement about why you wish to attend FLBS. Indicate which courses or research work will be undertaken during the summer session. Explain how participation in courses and research at FLBS are relevant to your university curriculum or your plans for future work.
3. Two letters of reference from faculty members in support of your request must be mailed or emailed (flbs@flbs.umt.edu) directly by each reference to FLBS.
4. If applying based on financial need, submit a PDF or print copy of your FAFSA SAR for 2017–2018 or 2018–2019.
5. Applicants may email all other scholarship materials to flbs@flbs.umt.edu or send via US mail to: Scholarship Committee, Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT 59860-6815.
6. Incomplete applications will not be considered. You must confirm that all scholarship materials have been received.

Scholarship List

Scholarships are provided through the generosity of many donors.

Mary Elrod Ferguson Memorial in Honor of Dr. Morton J. Elrod
Dr. Jessie Bierman Scholarship
Eric and Tootie Myhre Scholarship
James Hunter and Colleen Shaw Dion Scholarship
Dr. Robert L. Gilbertson Scholarship
Matthew Levitan Scholarship
Charles "Chuck" Levitan Scholarship
Robert Levitan Scholarship
Mark Levitan Scholarship
Sara Spero Levitan Scholarship
Richard and Jane Solberg Scholarship
James J. Elser Scholarship
Jack and Suzi Hanna Scholarship
John and Rosanne Elser Scholarship

Qualified, enrolled FLBS summer students (UM and non-UM) are eligible to apply for scholarships. A high percentage of applicants receive an award.
Summer 2018 Course Offerings

Four-Week Courses

FIELD ECOLOGY, BIOE 342, June 25–July 20, Monday–Thursday 8 am–5 pm, Friday ‘til Noon, 5 Credits

Prerequisites: One year of college-level biology, chemistry, and mathematics or equivalents; or consent of instructor. The course engages major concepts and approaches in modern ecosystem via immersive field experiences, hands-on sampling, and project-based learning in both aquatic and terrestrial habitats. Topics range from physiological and behavioral ecology to population and community ecology to ecosystem ecology. The course will build students’ natural history knowledge of the biota of the Rocky Mountain region while directly engaging them in active research projects of FLBS / UM faculty. This course is conducted largely outdoors regardless of weather so that ecological phenomena can be examined in real time and real life. **All-day and overnight trips will be conducted throughout the course**, taking students into a range of aquatic and terrestrial environments near the Bio Station and the adjacent mountain areas including Glacier National Park. **Students should be physically fit and able to hike 10 miles per day. Students will conduct directed measurements connected to ongoing research projects of the faculty, developing technical skills as well as skills in analysis and interpretation in written and oral form. Meets UM writing requirement. Instructor – Dr. James Eber, OBEE/FLBS-U of Montana (https://flbs.umt.edu/urls/peo) and Dr. Diana Six, CFC-U of Montana (https://www.cfc.umt.edu/personnel/details.php?ID=1140)**

SEMINARS IN ECOLOGY AND RESOURCE MANAGEMENT, BIOL 492, June 25–July 20, Monday 10 am–11 am, 1 Credit (CR/NCR) This seminar involves presentation and discussion of local environmental issues and problems, and is available to any students enrolled for the first 4 weeks of summer session in any combination of courses. **Instructor – Dr. Gordon Luikart, Systems Ecology/FLBS-U of Montana (https://flbs.umt.edu/urls/peo)**

Two-Week Courses, Mon-Fri, 8 am–5 pm, 3 Credits

CONSERVATION ECOLOGY, BIOE 440, June 25–July 6

Prerequisites: One semester of college-level biology and an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. Principles and methods of conservation ecology applied to aquatic and terrestrial species and ecosystems with emphasis on evolution, population genetics and behavioral ecology as key attributes to be considered in the design and implementation of conservation. This course emphasizes the application of basic biological research to problems in conservation and management with an eye toward the interface between science and policy. Five primary course themes are: defining population units of conservation; the effects of introduced species (including invasive species, hybridization, and infectious disease); habitat modification and climate change; population viability and monitoring; and policy and politics. These themes are applied to a diversity of case studies that have been chosen to illustrate general issues in conservation. A special aspect of the course is spending most of our time in the field with practicing, expert conservation biologists who work for state and federal government agencies or nongovernmental organizations. **Instructor – Dr. Christopher Frissell, FLBS-U of Montana (https://flbs.umt.edu/urls/peo)**

ENVIRONMENTAL SENSORS: DESIGNING, BUILDING, AND DEPLOYING IN THE FIELD, BIOB 491, June 25–July 6

Prerequisites A (Ecologists): One year of college-level biology, chemistry, and mathematics; computer programming; Prerequisites B (Engineers): Early proficiency in a computer programming language, computer aided design software, and/or manufacturing principles; or consent of instructor. Networked, autonomous environmental sensors are increasingly being used to collect real-time data about the natural world. Understanding how to design and produce the appropriate sensor to answer specific scientific questions requires knowledge from a broad range of disciplines. The Flathead Lake Biological Station’s SensorSpace (https://sensorspace.tech) is a cutting edge facility that enables scientists and engineers to design and manufacture their own environmental sensor networks. This course is designed for both engineering and ecology students to work on small team projects to learn about, design, manufacture, and deploy robotic environmental sensor networks. This course will include instrumentation design/manufacturing, and wireless network communications in the field. **Instructor – Dr. Cody Youngbull, FLBS-U of Montana (https://flbs.umt.edu/urls/peo)**

LANDSCAPE ECOLOGY, BIOE 451, July 9–20

Prerequisites: One year of college-level biology, chemistry, and mathematics, and an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. The objective of this course is to understand the physical and ecological processes that shape landscapes, how these biological and physical processes interact, and how they are responding to global change. We will examine how plants and animals are distributed across landscapes, how the physical template of the environment shapes species distributions and how biotic feedbacks can influence the physical environment. We will examine processes of pattern formation in the environment such as disturbance from fire and how landscape pattern can affect both physical and biological processes. Field trips will underscore concepts and allow data gathering and interpretation by students. Students are introduced to both satellite and airborne remote-sensing tools used in a GIS environment. Students will analyze and interpret spatially explicit data through analyses and oral presentations. **Instructor – Dr. Solomon Dobrowski, CFC-UM of Montana (https://www.cfc.umt.edu/personnel/details.php?ID=1110)**

VERY IMPORTANT—To participate in this course at FLBS you must be in good physical condition, able to hike up to 10+ miles a day in strenuous conditions at altitude, and properly equipped for a great deal of hiking!
Two-Week Courses, Mon-Fri, 8 am–5 pm, 3 Credits (Cont’d.)

AQUATIC MICROBIAL ECOLOGY, BIOB 491, July 9–20 Prerequisites: One year of college-level biology, chemistry, and mathematics, or equivalents; or consent of instructor. This intensive field course is available to upper-level under-graduate students with interests in environmental microbiology and aquatic ecology and provides a conceptual foundation and experiential field and laboratory training in modern methods in aquatic microbial ecology. Students will explore topics such as physiology and metabolism of aquatic microbes; methods and tools for assessing microbial diversity, biomass, and growth; and the role of microbes in bioelemental cycles. Students will gain hands-on experience with both cultivation-based approaches and cultivation-independent methods for studying environmental microorganisms. **Instructor – Dr. Matthew Church, OBEE/FLBS-U of Montana** (https://flbs.umt.edu/urls/peo)

ALPINE ECOLOGY, BIOE 416, July 23–August 3 Prerequisites: One semester of college-level biology and an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. Distribution, abundance and life cycles of plants and animals and their unique ecophysiological adaptations to life in the rigorous environments of mountains, high above the timberline, with emphasis on the Crown of the Continent area. Students learn about the distributions of plants and animals and study the processes and interactions that are the foundation to ecology in alpine environments. Substantial emphasis is placed on processes that organize communities and the global drivers of climate and how those processes affect alpine systems. The class is organized around field trips (involving extensive hiking) and data intensive class projects that underscore major concepts and allow training in data gathering, analysis, presentation and interpretation by students. **Instructor – Dr. Wendy Ridinour, U of Montana Western** (https://www.umwestern.edu/academics/biology)

LAKE ECOLOGY, BIOE 453, July 23–August 3 Prerequisites: One year of college-level biology, chemistry, and mathematics, and an ecology course (BIO E342 Field Ecology at FLBS) or equivalents; or consent of instructor. Physical, chemical and biological characteristics of lake ecosystems with an emphasis on how physical processes of lake circulation and stratification, nutrient loading and cycling, primary and secondary production and food web interactions, and atmospheric and land/watershed use affects water quality. This course focuses on functional relationships and productivity of plant and animal assemblages in lakes as regulated by physical, chemical and biotic processes. Fundamental concepts of ecology as they relate to the aquatic environment are emphasized. Limnological principles are presented within the context of regional and landscape spatial scales. Students will learn basic and contemporary methods of study in field settings including Flathead Lake, glacial lakes of Glacier National Park, intermontane prairie kettle lakes and nutrient rich lakes with emphasis toward experiential learning and obtaining hands-on examination and characterization of lakes. Written and oral reports of independent studies as directed by the professor are required. **Instructor – Dr. Shawn Devlin, FLBS-U of Montana** (https://flbs.umt.edu/urls/peo)

STREAM ECOLOGY, BIOE 439, August 6–17 Prerequisites: One year of college-level biology, chemistry, and mathematics, and an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. The biota and ecological processes of running waters with unifying principles and contemporary research approaches. This course focuses on the fundamental concepts of stream/river ecology and the physical, chemical and biological processes that characterize running water ecosystems. Students learn principles, concepts and methods of study in a field setting, and obtain hands-on experience in the examination and characterization of stream systems. Written and oral reports of independent or group studies as directed by the professor are required. **Instructor – Dr. Robert Hall, OBEE/FLBS-U of Montana** (https://flbs.umt.edu/urls/peo)

ECOLOGY OF FORESTS AND GRASSLANDS, BIOE 458, August 6–17 Prerequisites: One year of college-level biology, one semester of college-level chemistry, one semester of college-level mathematics, an ecology course (BIOE 342 Field Ecology at FLBS) or equivalents; or consent of instructor. Patterns and processes of forests and grasslands of the northern Rocky Mountains in the context of principles of population, community and ecosystem ecology. This course emphasizes the interactive biophysical attributes and processes of the forests and intermountain grasslands. Students observe and learn about plant and animal distributions, plant community structure and behavior including principles of plant ecology, ecophysiology and plant and animal interactions in these environments. Energy and materials transfer and feedbacks within food webs are used to describe complex interrelationships driving the dynamics of these systems, including both natural and human components as modifiers of systems dynamics. Field trips underscore concepts and allow data gathering and interpretation by students. **Instructor – Dr. Andrew Larson, CFC-U of Montana** (https://www.cfc.umt.edu/personnel/details.php?ID=17110)

DRONE REMOTE SENSING OF FRESHWATER ECOSYSTEMS, BIOB 491, August 6–17 Prerequisites: Prior coursework in GIS is mandatory (FORS 250 Intro to GIS for Forest Management or GPHY 284 Intro to GIS and Cartography at UM) or equivalents; or consent of instructors. Knowledge of remote sensing is preferred, but not required. This course will introduce students to field-based methods of close range remote sensing in freshwater ecosystems. Students will gain knowledge of basic spatial analysis through GIS and remote sensing techniques. Students will learn basic application of drones and ADP, two remote sensing instruments of fast growing interest in ecological research and application. Students will learn about essentials to operate drones and ADPs, initial post processing of data products and integrating these data into ecological research and application. **Instructors – Dr. Michael Doering, ZHAW** (https://www.zhaw.ch/en/about-us/person/doeri/)

Diane Whited, FLBS-U of Montana (https://flbs.umt.edu/urls/peo)

One-Week Courses, Mon-Fri, 8 am–5 pm, 1 Credit

FIELD METHODS IN ORNITHOLOGY, BIOB 491, July 23–27 Prerequisites: At least one year of college-level biology, a semester of mathematics and some experience with bird identification; or consent of instructor. This field course focuses on conceptual and practical understanding of advanced techniques in ornithology. You will get experience in bird identification (including molt, aging and sexing), mist-netting and banding, point count surveys, telemetry, recording and bioacoustical analyses. We will read and discuss some key papers in the relevant literature. After successful completion of this course, you will have high-level field research skills in avian biology. These skills would help in your own research, or in getting field research jobs. The instructors are certified trainers by the North American Banding Council and collectively have over 100 years of experience as avian researchers. **Instructors – Dr. Erick Greene, OBEE-U of Montana** (https://www.cfc.umt.edu/personnel/details.php?ID=883), Megan Fylling, DBS-U of Montana (http://hs.umt.edu/dbs/people/default.php?id=Fylling5301), and Anna Noson, DBS-U of Montana (http://apps.umt.edu/directory/details?dd5796oa608d9a3b462e7418d20e3955)

“The field experience and trips were amazing. This has been a once in a lifetime course. Absolutely wonderful.”
Summer 2018 Course Offerings (Cont’d.)

Independent Study—1 to 8 Credits—Contact FLBS for more information.

UNDERGRADUATE RESEARCH EXPERIENCE, BIOB 497, 3–6 Credits (CR/NCR) Independent research experience in field ecology associated generally with the various research projects at FLBS. Projects are mentored by permanent and visiting FLBS faculty. Send us a short outline of research work you would like to undertake.

UNDERGRAD THESIS BIOB 499, 3–6 Credits (CR/NCR) Prerequisite: Senior standing and consent of instructor. Objective is preparation of a thesis/manuscript based on undergrad research in field ecology for presentation and/or publication. Student must give an oral presentation at the Biological Station. Student provides short outline of proposed research work.

RESEARCH IN ECOLOGY BIOB 596, 1–8 Credits (CR/NCR) Open only to non-UM graduate students. The purpose of this independent research is to solve a specific ecological problem as identified and examined by the student under mentorship of a Biological Station professor. Independent research includes design, analysis and reporting of ecological data. Student provides outline of proposed research work.

Summer Session Fees, Lodging, and Food Service

Fees

Course fees for residents and nonresidents are $490 per credit. This price includes a credit recording fee assessed by the University of Montana School of Extended and Lifelong Learning. The final amount owed is based on the number of credits you elect to take plus the appropriate housing and meal plan. See page 2 for the Early Bird application and Early Payment discounts.

Housing and Food Service

Living on the Biological Station grounds is required to allow full-time interaction between students, instructors and the world-class research program here. There are 30 double occupancy (12' x 14') cabins. All cabins are heated and furnished with lights, electricity, two twin-size beds, chairs, desks, and closets. Restroom and shower facilities are located near the cabins.

Housing is assigned on a first to apply basis for qualified applicants. Let us know in the appropriate spaces on your application if you have roommate preferences (i.e., particular person, nonsmoker, etc.).

Housing student family members at FLBS is contingent upon available space. All students, staff, family members and guests staying at the Biological Station are required to pay full housing and meal rates. All housing assignments are final.

Food Service starts with an orientation dinner Sunday June 24, 2018. Food service includes breakfast, lunch, dinner for the duration of each course. Weekend meals will be available for those students attending courses the following week. A dinner will be provided for all new students on the subsequent orientation Sundays.

- Check in Sunday afternoon before first scheduled class day.
- Check out 11:00 am on the day following your last scheduled class day.
- Pets are not allowed on Station grounds.
- As part of the University of Montana, FLBS is a tobacco-free campus.
- Due to the danger of forest fires, personal cooking by students is not allowed.

Medical insurance is not included in fees. Students are strongly encouraged to carry medical health insurance as it is not available through the Flathead Lake Biological Station. Medical facilities are available in the nearby towns of Polson, Bigfork, and Kalispell.

Summer Session Fees, Lodging, and Food Service

<table>
<thead>
<tr>
<th>Credits</th>
<th>Tuition</th>
<th>Credits</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$490</td>
<td>8</td>
<td>$3920</td>
</tr>
<tr>
<td>2</td>
<td>$980</td>
<td>9</td>
<td>$4410</td>
</tr>
<tr>
<td>3</td>
<td>$1470</td>
<td>10</td>
<td>$4900</td>
</tr>
<tr>
<td>4</td>
<td>$1960</td>
<td>11</td>
<td>$5390</td>
</tr>
<tr>
<td>5</td>
<td>$2450</td>
<td>12</td>
<td>$5880</td>
</tr>
<tr>
<td>6</td>
<td>$2940</td>
<td>13</td>
<td>$6370</td>
</tr>
<tr>
<td>7</td>
<td>$3430</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Housing & Food Service Fees</th>
<th>Double Occupancy</th>
<th>Single Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Week:</td>
<td>$260</td>
<td>$310</td>
</tr>
<tr>
<td>2 Weeks:</td>
<td>$520</td>
<td>$620</td>
</tr>
<tr>
<td>4 Weeks:</td>
<td>$1040</td>
<td>$1240</td>
</tr>
<tr>
<td>6 Weeks:</td>
<td>$1560</td>
<td>$1860</td>
</tr>
<tr>
<td>8 Weeks:</td>
<td>$2080</td>
<td>$2480</td>
</tr>
</tbody>
</table>

All fees subject to change.

Biological Station Cabins

Prescott Dining Hall

Lakeside Classrooms
Other Services

FLBS Bookstore. Textbooks and basic course supplies may be purchased at the FLBS Bookstore. You are provided with a list of necessary items upon acceptance to our program. Cash, personal checks, traveler’s checks, money orders and credit cards (Discover/MasterCard/Visa) are accepted in payment for books and supplies.

Banking and Telephone Services. Either traveler’s checks or a debit card offer added convenience for the duration of your stay. The nearest bank, for cashing personal checks, and ATM is 15 miles north of the Station in Bigfork. ATMs are available in nearby towns (10–15 miles). A telephone credit card or prepaid phone card is useful as most calls are long distance and must be placed using pay phones. Cell phone service is available in this area, but coverage is spotty.

Climate and Dress

Generally, everyone dresses casually. The last two weeks in June can be somewhat chilly and damp. Bring a cold weather jacket and warm clothes (layers recommended). See average area temperatures below.

<table>
<thead>
<tr>
<th></th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Highs °F</td>
<td>71</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Average Lows °F</td>
<td>44</td>
<td>47</td>
<td>46</td>
</tr>
</tbody>
</table>

Student Mailing Address

You will be assigned a box for mail and messages. Outgoing mail may be sent on normal mailing days; incoming mail should be addressed using the following address:

Your Name
32111 Bio Station Lane
Polson, MT 59860-6815

Computers / Internet Access

FLBS no longer maintains a student computer lab. *All students are required to bring their own laptop.* FLBS will work with students unable to bring a personal laptop due to financial hardship. Microsoft Office is also recommended for optimal collaboration with faculty and peers. Bringing your own laptop also allows enrolled students to access:

- Shared server storage and software, including access to Microsoft Office (Word, Excel, and PowerPoint), SPSS statistics software, and Endnote reference manager software
- Wireless internet
- Classroom printers

Items-to-Bring Checklist

Students, faculty and staff need to bring the following items:

- Blankets, bed linens (twin-size sheets, pillows, etc.; mattress pad provided), and towels
- Toiletry articles
- Proper clothing
- Full rain gear is essential plus umbrella
- Hiking boots (not too stiff, and broken in)
- Hot/cold mug and water bottle (2 liter recommended)
- Lunch pack-up container (small divided Rubbermaid-style container or two small containers; lunch is packed every day)
- Flashlight/headlamp, batteries
- Laundry soap/Quarters for laundry
- Alarm clock
- Sunglasses, sunscreen and cap/hat
- Daypack and backpack, sleeping bag
- Mess kit for field trips & weekends (plates, cups, storage container, eating utensils)
- Camera/digital camera (optional)
- Laptop computer
- Prepaid phone card or cell phone
- Money/ATM card
- Also see online equipment list http://flbs.umt.edu/urls/lists
Travel Options and Rides to FLBS

Driving—Many students drive their own vehicles to the Biological Station. If you want riders or need a ride, please use the online Student Rider Board (available after applying online for summer session). Note that without your own vehicle, you will need to network with other students to get to town (~15 miles) and/or for weekend adventures. Find directions at flbs.umt.edu/urls/loc.

Flying—FLBS advises flying into Glacier International Airport (FCA), ~42 miles north of FLBS. Students sometimes find it is cheaper to fly into Missoula International Airport (MSO), ~85 miles south of FLBS, but consider additional transport costs when making your arrangements.

Train—Amtrak (Empire Builder Route http://www.amtrak.com/empire-builder-train) makes a daily stop in Whitefish (~47 miles north of FLBS). The Westbound train arrives late p.m., while the eastbound arrives early a.m.

Ground Transport Options No-Fee FLBS Shuttle – June 24 and August 18 ONLY

Whether you choose to fly or take a train, you must also transfer from your arrival point to FLBS. FLBS offers a no-fee shuttle from the Kalispell Glacier International Airport on June 24 and August 18. Shuttle service is available under the following limitations:

- You must notify FLBS of your itinerary details by 4 p.m. MDT, Thursday, June 21, 2018.
- For June 24, 2018 arrivals, the last shuttle will leave the airport as needed and confirmed, but no later than 5 p.m.
- For August 18, 2018 departures, a shuttle will leave FLBS to Glacier International Airport at ~4:30 a.m. You may optionally contact Big D’s Taxi at 406-892-3390 to prearrange and confirm taxi service for other dates and times. For all other airport departures, plan to network with other students with vehicles for a ride (see online Rider Board).

Other Ground Transport Options

From Glacier International Airport (FCA) to FLBS ~42 miles

- FLBS shuttle is available June 24 and August 18
- Car rentals
- Taxi (van) service from airport to FLBS (~$125, Big D’s Taxi at 406-892-3390). All taxi services must be prearranged and confirmed by students.

From Missoula International Airport (MSO) to FLBS ~85 miles

- Car rentals (No shuttle available)
- Greyhound bus to Polson and taxi from Polson to FLBS

Plan for additional expenses: taxi fare(s) from the Missoula airport to downtown Missoula Greyhound bus terminal and/or overnight lodging; overnight stay (~$100 up) in Missoula due to flight and bus schedule connections; bus ticket from Missoula to Polson (~$20 one-way, Greyhound 406-549-2339); taxi from Polson bus stop to Yellow Bay (~$25, Annie’s Taxi 406-309-0999).

Whitefish Amtrak Train Depot to FLBS

- Taxi service from train station to FLBS (~$140 for first person and $3 for each additional person, Big D’s Taxi 406-892-3390)
- Car rental (Hertz 406-863-1210)
- On June 24, 2018 ONLY, you may take a taxi from the Whitefish depot to Glacier International Airport to connect to the FLBS shuttle (see limitations above).

GET STARTED NOW!

APPLY ONLINE NOW AT:
http://flbs.umt.edu/apps/education

APPLY BY JAN. 12th for a $100 discount!

DON’T WAIT...CLASSES MAY FILL BY FEBRUARY!
Reserve a spot in your FIRST CHOICE CLASSES NOW!

PAY BY APRIL 30th for a $100 discount!